Dataset

Ensemble precipitation forecasts made with Quantile Regression Forests and deterministic Harmonie-Arome inputs

Permanente linkGekopiëerd
Status Beschikbaar
Data eigenaar Koninklijk Nederlands Meteorologisch Instituut
Bijgewerkt 27-03-2024
Licentie CC-BY (4.0)
Thema
  • Lucht
Toegang Publiek
Metadata Download (XML/RDF)

Beschrijving

A gridded 50-member ensemble of precipitation forecasts that are created using a tree-based machine learning method, quantile regression forests, and inputs from the deterministic Harmonie-Arome (HA) forecasts. The target data set is rain-gauge-adjusted radar data that is upscaled by taking 3x3 km means and then a maximum is taken in a 7.5 x 7.5 km box. Inputs to the machine learning model include HA precipitation, and indices of atmospheric instability. Spatial and temporal dependencies are restored using the Schaake Shuffle. Forecasts are available during the extended summer period (mid-April to mid-October). Hourly forecasts are issued 4 times per day (00, 06, 12 en 18 UTC) for 48-hours into the future.

Eigenaar

Gegevens van de aanbieder

Contactpunt

Publicatie

Hergebruik

Licentie en voorwaarden

Locatie en tijd

Tijdsdekking

Relaties

Vergelijkbare datasets

Metadata

Taalinstellingen

Taal dataset

Taal van de metadata

Identificatie

Primaire identificatie van deze dataset


Downloads